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Abstract

A data buyer, uncertain about a payoff-relevant state, has private information—

a signal modeled as a finite partition of an expanded state space—that is only par-

tially informative. A data seller, capable of generating arbitrarily correlated signals,

aims to maximize revenue by selling an optimal menu of signals. We characterize

the properties of this revenue-maximizing mechanism and demonstrate that, de-

spite information asymmetry, first-best outcomes can still be achieved. Specifically,

the seller can offer a supplemental signal tailored to each buyer type, priced at the

buyer’s willingness to pay, ensuring socially efficient full surplus extraction.
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1 Introduction

The extensive use of data has become common practice in the digital economy, where

firms increasingly rely on multiple sources of information to make decisions. To better

understand customer preferences and optimize marketing strategies, firms collect and

analyze a wide range of demographic data—such as age, gender, race, location, education,

occupation, and income—from both online and offline sources. These sources include

public records, social media platforms, browsing behavior, and purchase histories, which

provide valuable insights into consumer behavior. However, this existing information

is incomplete, leading firms to seek additional data to improve their decision-making.

The growing demand for information has given rise to a data market, where third-party

data brokers, such as Axicom, offer data products for sale. The design and pricing of

information have become important research topics.

This paper develops a framework to analyze the optimal sale of information in the presence

of information asymmetry between a monopolist data seller and a single data buyer. The

buyer faces a decision problem under uncertainty and has private information about

a payoff-relevant state, represented by a signal that is modeled as a finite partition of

an expanded state space. However, this private signal is only partially informative. To

further reduce uncertainty and make more informed decisions, the buyer can purchase

additional information in a data market where the seller offers signals as data products.

The seller can generate any signals that are informative about the state. We assume

that only the signal itself is contractible. The seller’s objective is to design a revenue-

maximizing menu of signals with associated prices.

Although the seller does not know the buyer’s exact private signal, he knows the probabil-

ity distribution of the possible signals the buyer might have. From the seller’s perspective,

there are different buyer types, where the buyer’s type is captured by his private signal.

The realization of the private signal is observed after the buyer decides whether or not

to purchase an additional signal. The value of this private signal is evaluated from an

ex-ante perspective, representing the expected utility the buyer can achieve by making

optimal decisions upon observing each realization from the signal. The buyer’s willing-

ness to pay (WTP) for any additional signal depends on the incremental value it adds to
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his private signal. As a result, the WTP varies across different buyer types for the same

signal.

In the full-information benchmark, where the seller knows the buyer’s private signal, the

seller can offer a fully informative signal to the buyer at a price equal to the buyer’s WTP.

The maximum possible revenue the seller could achieve in this scenario is referred to as

the first-best revenue. In contrast, in the actual model—where the seller does not know

the buyer’s type—the seller can design a menu of signals that differ in informativeness

and price, allowing the buyer to self-select based on his private signal. Selling a fully

informative signal is not always necessary, as the buyer already has access to a private

signal that provides information about the state. Instead, the seller can leverage the

correlation between the buyer’s private signal and the signals being offered. By offering

a signal that is a supplement to the buyer’s private signal, the seller provides additional

information that fills in the gaps in the buyer’s existing information, thereby ensuring

that the buyer attains complete information about the state.

We characterize the properties of an optimal menu for the seller’s revenue-maximizing

problem in a setting with binary buyer types (Proposition 1). From the seller’s perspec-

tive, a buyer who derives less value from his private signal is considered more valuable and

is thus referred to as the high type, whereas a buyer with a higher-valued private signal

is referred to as the low type. Two familiar properties emerge. The first is “efficiency at

the top”, where the high type purchases a signal that supplements his private signal, thus

achieving complete information about the state, as efficiently as in the full-information

benchmark. The second is “no rent at the bottom”, where the seller extracts full sur-

plus from the low type by offering the buyer only his reservation utility and paying zero

information rent.

The first-best implementation refers to achieving an optimal outcome under asymmetric

information, which coincides with the outcome that would occur with full information.

We introduce the WTP condition and show that the first-best implementation is achieved

for the sale of information under this condition (Proposition 2). The key insight is that

the seller can construct a menu of differentiated signals that is both individual-rational

and incentive-compatible, enabling the seller to sell a supplemental signal to each buyer

type at a price equal to the buyer’s WTP. Thus, the seller extracts full surplus from both
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buyer types. Moreover, this full surplus extraction is socially efficient, as the seller

obtains the first-best revenue.

To avoid providing redundant information, we introduce the concept of a minimal sup-

plement. A minimal supplement provides only the additional information necessary to

complete the buyer’s knowledge about the state. Using this concept, we can construct

two compound signals and derive an alternative interpretation of the WTP condition.

We provide a sufficient condition (Proposition 5) for the WTP condition to hold, rely-

ing on the Blackwell order between these compound signals. Given that the value of a

signal is equal to the value of the experiment that is induced by the signal1, we focus

on the Blackwell order between the experiments induced by the compound signals. We

formalize a less commonly used definition of Blackwell order on experiments (Lemma

6) and demonstrate that the first-best implementation is surprisingly common, as illus-

trated in Example 1 and Example 2. For instance, in the case of binary states and a

set of private signals—comprising one signal with two realizations and another with one

realization—the seller can achieve the first-best revenue (Proposition 6). Furthermore,

in a setting with two Blackwell-ordered signals, each with two realizations, the first-best

implementation is also achieved (Proposition 7).

1.1 Related Literature

This paper contributes to the recent literature on selling information to privately informed

buyers. We explore the optimal design of signals, distinguished from existing studies

that focus on the optimal design of experiments (Bergemann, Bonatti, and Smolin,

2018; Rodŕıguez Olivera, 2024). Formalizing an information source as a signal provides a

distinct approach compared to formalizing it as an experiment. Blackwell (1951) models

an information source as an experiment, where the correlation between observations from

that source and the state is specified. In contrast, Green and Stokey (1978) model

an information source as a signal, which not only specifies the correlation between its

observations and the state but also considers the correlation between its observations

and those from other sources. While most prior work assumes conditional independence

1A signal induces an experiment, as discussed in Section 2.1.
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between information sources—making it sufficient to model them as experiments—we

allow for arbitrary correlations, following the approach of Green and Stokey (1978), and

model information sources as signals.

This paper also adds to the literature on multidimensional screening, a topic known

for its inherent complex and challenging tractability (Stole and Rochet, 2003). In our

model, the buyer’s private information is multidimensional, represented by a signal that

induces a distribution of beliefs. We provide a characterization of an optimal mechanism

that applies to other multidimensional screening problems, including those with type-

dependent outside options.

Another related literature studies the joint informational content of multiple information

sources. Börgers, Hernando-Veciana, and Krähmer (2013) explore the substitutability

and complementarity relations among signals. Gentzkow and Kamenica (2017) discuss

Bayesian persuasion in a setting where multiple senders have access to a rich signal

space, allowing for arbitrary correlation among the senders’ signals. Brooks, Frankel,

and Kamenica (2024) derive comparisons of information sources that remain robust to

potential presence of pre-existing information.

2 The Model

2.1 Model Setup

Consider two players: a single data buyer and a monopolist data seller. The buyer faces a

decision problem under uncertainty and his utility function u(a, ω) depends on his action

a ∈ A and the state of the world ω ∈ Ω. The action space A is compact, and the state

space Ω is finite. Assume that the state space consists of K elements:

Ω ≜ {ω1, ..., ωk, ..., ωK}.
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A belief is a distribution over the state space, denoted by µ ∈ ∆(Ω).2 Let µ0 be the

interior prior3, which is commonly known.

A signal π is a finite partition of the expanded state space Ω× [0, 1], with each element

of this partition belonging to S, the set of non-empty Lebesgue-measurable subsets of

Ω×[0, 1] (Green and Stokey, 1978; Gentzkow and Kamenica, 2017).4 An element s ∈ S is a

signal realization. This formalism distinguishes payoff-relevant states (Ω) from those that

govern the realization of observations conditional on the state ([0, 1]). The interpretation

is that a random variable x, drawn uniformly from [0, 1], determines the signal realization

conditional on the state. Specifically, the buyer with signal π will observe the realization

s ∈ π that contains (ω, x) ∈ Ω× [0, 1]. Thus, the conditional probability of s given ω is

p(s | ω) ≜ λ({x | (ω, x) ∈ s}),

where λ denotes the Lebesgue measure. The unconditional probability of s is

p(s) ≜
∑
ω∈Ω

µ0(ω)p(s | ω).

Upon observing the signal realization s, the posterior belief µs is formed via Bayes’ rule

(for p(s) > 0), where the posterior probability of ω given s is

µs(ω) ≜
µ0(ω)p(s | ω)

p(s)
.

This representation is useful for analyzing the joint informational content from multi-

ple sources and understanding correlations between signal realizations. For a graphical

illustration, see Figure 1. In this example, let Ω = {ω1, ω2} and π = {a, b}, where

a = (ω1, [0, 0.7])∪ (ω2, [0.6, 1]) and b = (ω1, [0.7, 1])∪ (ω2, [0, 0.6]). The signal π is a finite

partition of Ω× [0, 1] with conditional probabilities p(a | ω1) = 0.7 and p(b | ω2) = 0.6.

2∆(X) denotes the set of all probability distributions over the set X.
3The prior probability of each state is strictly positive.
4Green and Stokey (1978, 2022) introduce the notion of signals as partitions of an expanded state

space. The particular formalism used in this paper follows Gentzkow and Kamenica (2017).
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ω1 ω2

π
a ab b

0 1 0 10.7 0.6

Figure 1: A signal π.

Let Π be the set of all signals.5 The buyer has private information about the state,

represented by a signal π ∈ Π0, where Π0 ⊂ Π is the set of N possible private signals:

Π0 ≜ {π1, ..., πn, ..., πN}.

The buyer’s type is captured by his private signal, which induces a distribution of

beliefs. Thus, the space of buyer types corresponds to the space of private signals.

Specifically, a buyer who has private signal πi is referred to as type πi, where i ∈ {1, ..., N}.

In the data market, the seller can generate any signals at no cost and offer them for sale to

the buyer. Although the seller does not know the exact type of the buyer, he knows that

the buyer is of type πi with probability θi. To maximize revenue, the seller offers a menu

of differentiated signals with associated prices. The buyer will observe a realization from

his private signal only after deciding whether or not to purchase an additional signal.

If the buyer opts out of the data market, he will observe one realization only from his

private signal. However, if he chooses to buy an additional signal, he will observe two

realizations: one from his private signal and another from the purchased signal, with a

transfer made to the seller. After updating his beliefs about the state, the buyer selects

an action. Our objective is to determine the revenue-maximizing menu of signals, along

with their corresponding prices, for the seller.

Timing of Events

(i) The seller offers the buyer a menu M of signals with associated prices.

(ii) Nature draws a state ω ∈ Ω according to the prior belief µ0. The buyer learns his

private signal π ∈ Π0.

5Arbitrary correlations between signal realizations across signals are allowed.
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(iii) The buyer decides whether or not to purchase an additional signal.

(iv) If the buyer opts out of the data market, he observes only the realization of his

private signal. If he purchases an additional signal from the seller, he observes

realizations from both his private signal and the purchased signal, while the seller

receives a transfer.

(v) The buyer selects an action a ∈ A, and his payoff is realized.

Signals vs. Experiments

Signals are distinct from experiments. An experiment consists of a set of possible

outcomes and a family of conditional distributions over these outcomes given the state.

While a signal induces an experiment, it also specifies the correlation with other signals.

It is possible for two distinct signals to induce identical experiments. For instance, as

illustrated in Figure 2, consider Ω = {ω1, ω2} and two signals, π = {c, d} and π′ = {e, f}.

Both signals have identical conditional distributions: p(c | ω1) = p(e | ω1) = 0.7 and

p(d | ω2) = p(f | ω2) = 0.5. Thus, they induce identical experiments.

ω1 ω2

π
c c c

0.7

d d d

0.3 0.6 0.8

π′ e e

0.7

f f

0.5

Figure 2: Two distinct signals π and π′ induce identical experiments.

2.2 Value of Signals

Given a belief µ, the buyer selects an action a ∈ A to maximize expected utility:

a(µ) ∈ argmax
a∈A

Eω∼µ[u(a, ω)].
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Let v̂(µ) denote the expected utility of the buyer from choosing the optimal action given

belief µ, where

v̂(µ) ≜ max
a∈A

Eω∼µ[u(a, ω)] = max
a∈A

∑
ω∈Ω

µ(ω)u(a, ω).

Lemma 1. The function v̂(µ) : ∆(Ω) → R is convex.

The proof of Lemma 1 is provided in the Appendix.

The ex-ante value of signal π, denoted by v(π), is the expected utility that the buyer

can achieve by acting optimally upon observing each realization of the signal π. It is

given by

v(π) ≜
∑
s∈π

p(s)v̂(µs) =
∑
s∈π

max
a∈A

∑
ω∈Ω

u(a, ω)p(s, ω),

where p(s, ω) ≜ µ0(ω)p(s | ω).

Remark 1. The value of a signal is equal to the value of the experiment induced by that

signal.

To discuss multiple signals, it is useful to define the join of two signals.

Definition 1 (Refinement/Coarsening). A signal π is a refinement of π′ (or equiva-

lently, π′ is a coarsening of π), if every element of π is a subset of one element of π′.

Formally, for each s ∈ π, there is an s′ ∈ π′ such that s ⊆ s′.

Definition 2 (Join). The join of signals π and π̂, denoted by π ∨ π̂, is the coarsest

common refinement of π and π̂. It is defined as the set of intersections formed by pairing

each element of π with each element of π̂:

π ∨ π̂ ≜ {s′ ∈ S | s′ = s ∩ ŝ, s ∈ π, ŝ ∈ π̂}.

The signal π ∨ π̂ yields the same information as observing both signals π and π̂. Figure

3 illustrates the join of two signals.
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ω1 ω2

π
a ab b

π̂
c cd d

π ∨ π̂
ac acad bd bd bc

Figure 3: The signal π ∨ π̂ is the join of signals π and π̂.

The value of the signal π ∨ π̂ is given by

v(π ∨ π̂) ≜
∑

s′∈π∨π̂

p(s′)v̂(µs′) =
∑
s∈π

∑
ŝ∈π̂

max
a∈A

∑
ω∈Ω

u(a, ω)p(s ∩ ŝ, ω).

To establish the upper and lower bounds for the value of signals, we introduce two im-

portant signals: π and π.

The signal π is the coarsest uninformative signal. An uninformative signal is one

that induces a posterior identical to the prior.6 The signal π is defined as:

π = {Ω× [0, 1]}.

Figure 4 illustrates this concept. In the case of a binary state space Ω = {ω1, ω2},

π = {a}, where a = Ω× [0, 1].

ω1 ω2

π
a a

Figure 4: The signal π in binary states.

The value of the signal π, denoted by v, is given by

v ≜ v(π) = v̂(µ0) = max
a∈A

∑
ω∈Ω

µ0(ω)u(a, ω).

6Multiple uninformative signals can be generated by refining the signal π.
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The signal π is the coarsest fully informative signal. A fully informative signal

provides complete information about the state by inducing a distribution of degenerate

beliefs.7 The signal π is defined as:

π = {(ω1, [0, 1]), ..., (ωk, [0, 1]), ..., (ωK , [0, 1])}.

See Figure 5 for an illustration. For a binary state space Ω = {ω1, ω2}, π = {b, c}, where

b = (ω1, [0, 1]), c = (ω2, [0, 1]).

ω1 ω2

π
b c

Figure 5: The signal π in binary states.

The value of the signal π, denoted by v, is given by

v ≜ v(π) =
∑
ω∈Ω

µ0(ω)max
a∈A

u(a, ω).

Lemma 2. The value of signals is bounded such that:

v ≤ v(π) ≤ v, ∀π ∈ Π.

Refer to the Appendix for the proof of Lemma 2.

2.3 Seller’ Problem

By the revelation principle, we can focus on direct mechanisms.8 A direct mechanism M

assigns a signal π̃(πi) : Π0 → Π and a price t(πi) : Π0 → R to each type of buyer, where

M ≜ {(π̃(πi), t(πi))}πi∈Π0 .

7Multiple fully informative signals can be generated by refining the signal π.
8See Lemma 1 in Myerson (1981)
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For simplicity, let π̃i represent π̃(πi) and ti represent t(πi). Thus, any direct mechanism

can be denoted by:

M = {(π̃i, ti)}i∈{1,...,N}.

In the data market, the seller offers a menu M of signals to the buyer. If the buyer of

type πi purchases signal π̃j, where j ∈ {1, ..., N}, his payoff is

v(πi ∨ π̃j)− tj,

which is the value of having both the private signal πi and the additional signal π̃j, minus

the transfer tj made to the seller. Given that the buyer is of type πi with probability θi,

the expected revenue for the seller is

R ≜ E[ti] =
∑

i∈{1,...,N}

θiti.

The seller’s problem is to choose a menu of signals with associated prices to maximize

expected revenue:

max
{(π̃i,ti)}i∈{1,...,N}

∑
i∈{1,...,N}

θiti,

subject to the individual-rationality constraints:

v(πi ∨ π̃i)− ti ≥ v(πi), ∀i ∈ {1, ..., N},

and incentive-compatibility constraints:

v(πi ∨ π̃i)− ti ≥ v(πi ∨ π̃j)− tj, ∀i, j ∈ {1, ..., N}, i ̸= j.

To obtain the lower and upper bounds of revenue from selling data, it is useful to consider

two benchmarks.

Definition 3 (Reservation Utility). The reservation utility of type πi is defined as the

value of the private signal πi, denoted by v(πi).

Assumption 1. The reservation utility of each type of buyer decreases with the index

n:

v(π1) ≥ ... ≥ v(πn) ≥ ... ≥ v(πN).
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Definition 4 (Willingness to Pay). The willingness to pay (WTP) of type πi for

signal π is defined as the incremental value that signal π adds to type πi. Formally, it is

the difference between the value of signal πi ∨ π and the value of πi, denoted by

v(πi ∨ π)− v(πi).

The WTP varies across different types of the buyer for the same signal. For instance, the

WTP of type πi for a fully informative signal, such as π, is given by

v(πi ∨ π)− v(πi) = v(π)− v(πi) = v − v(πi),

where the first equality comes from Remark 1.

Under Assumption 1, the WTP of type πi for a fully informative signal increases with

the index n, such that:

v − v(π1) ≤ ... ≤ v − v(πn) ≤ ... ≤ v − v(πN).

Single-item-menu Benchmark

The lower bound of revenue can be analyzed in a scenario where the seller is restricted to

selling only a single item to the buyer. This benchmark provides a baseline for evaluating

the seller’s potential revenue compared to more complex mechanisms. The seller sets a

uniform price to maximize expected revenue from selling a fully informative signal, such

as π, to the buyer. The buyer will purchase the signal if his WTP for π exceeds this

price. The optimal price must equal the WTP of one type for the signal π; otherwise,

the seller could improve revenue by adjusting the price. The highest revenue achievable

under this benchmark serves as the lower bound of revenue, denoted by:

R ≜ max
n∈{1,...,N}

(v − v(πn))
N∑
i=n

θi.

Full-information Benchmark

The upper bound of revenue is evaluated in the full-information benchmark, where the
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seller knows the type of buyer. In this case, the seller can sell a fully informative signal,

such as π, to each type of buyer at a price equal to that type’s WTP for π.

Definition 5 (First-best Revenue). The first-best revenue is the maximum possible

revenue that the seller could achieve in the full-information benchmark, denoted by:

R ≜
N∑
i=1

θi(v − v(πi)).

In the actual model, the seller does not know the type of buyer. Therefore, the goal is

to design a menu of differentiated signals with corresponding prices to screen different

types of the buyer, thereby extracting as much as revenue as possible within the bounds

established by the single-item-menu and full-information benchmarks.

3 Optimal Menu with Binary Types

In this section, we consider a scenario where the single data buyer has binary types:

Π0 = {π1, π2}, with v(π1) ≥ v(π2). The buyer is either of type π1 or type π2. Let

θ ∈ (0, 1) be the probability that the buyer is of type π2.

The seller’s revenue-maximizing problem is given by

maximize
{(π̃i, ti)}i∈{1,2}

(1− θ)t1 + θt2

subject to v(π1 ∨ π̃1)− t1 ≥ v(π1) (IR1),

v(π2 ∨ π̃2)− t2 ≥ v(π2) (IR2),

v(π1 ∨ π̃1)− t1 ≥ v(π1 ∨ π̃2)− t2 (IC1),

v(π2 ∨ π̃2)− t2 ≥ v(π2 ∨ π̃1)− t1 (IC2).

(1)

In the two benchmarks discussed previously, we established that the seller can sell a

fully informative signal to the buyer. However, providing a fully informative signal is

not always necessary, as the buyer already has access to a private signal that provides

information about the state. To characterize the optimal menu, we first introduce the

14



concept of a supplement of a signal, which is crucial for the subsequent analysis.

Two signals, π and π′, are said to be Blackwell equivalent, denoted by π ∼ π′, if the

distribution of posteriors induced by π is identical to the distribution of posteriors induced

by π′. For example, the signals π and π′ shown in Figure 2 are Blackwell equivalent.

Definition 6 (Supplements). A supplement of a signal π, denoted by πsu, is a signal

such that the join of π and πsu is Blackwell equivalent to a fully informative signal:

(π ∨ πsu) ∼ π.

A supplement πsu of a signal π provides complete information about the state when

combined with π. To construct a supplement of π, consider partitioning each s ∈ π into

subsets {sk}k∈{1,...,K}, where sk = {(ωk, x) | (ωk, x) ∈ s}. The signal π′ = ∪s∈π,k∈{1,...,K}sk

is a supplement of π. By garbling π′, multiple supplements of π can be generated.

For instance, in Figure 6, consider Ω = {ω1, ω2} and a signal π = {a, b}, where a =

(ω1, [0, 1])∪ (ω2, [0.7, 1]) and d = (ω2, [0, 0.7]). The signal π
′ = {a1, a2, b2} is a supplement

of π. However, for binary states, it is sufficient to consider signals with only two realiza-

tions. By garbling π′, multiple supplements of π can be generated. For each γ ∈ [0, 0.7),

the signal πγ = {c, d} represents a supplement of π, where c = (ω1, [0, 1]) ∪ (ω2, [0, γ])

and d = (ω2, [γ, 1]). Similarly, the signal π̂ = {e, f} is a supplement of π, where

c = (ω1, [0, 1]) ∪ (ω2, [0, 0.7]) and d = (ω2, [0.7, 1]).

ω1 ω2

π
a ab

0.7

π′
a1 a2b2

πγ
c c d d

γ 0.7

π̂
e e f

Figure 6: The signals π′, πγ , and π̂ are supplements of π.
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By Remark 1, the WTP of type πi for the signal π
su
i , which is a supplement of the signal

πi, is given by

v(πi ∨ πsu
i )− v(πi) = v(π)− v(πi) = v − v(πi).

We now characterize the properties of an optimal menu for the revenue-maximizing prob-

lem described in (1).

Proposition 1 (Menu Properties). Consider Π0 = {π1, π2} with v(π1) ≥ v(π2). The

following properties hold in an optimal menu:

(i) Type π2 pays a higher price than type π1: t2 ≥ t1;

(ii) Type π2 purchases a signal π̃2 that is a supplement of π2: (π2 ∨ π̃2) ∼ π;

(iii) Type π1 receives his reservation utility v(π1): IR1 binds.

Type π2 has a lower reservation utility than type π1, i.e., v(π2) ≤ v(π1). From the seller’s

perspective, type π2 is more valuable and is considered as the “high type”, while type π1

is considered as the “low type”. As indicated in Proposition 1, in an optimal menu, the

high type pays a higher price than the low type. Additionally, two familiar properties

are observed: “efficiency at the top”, where the high type purchases a signal that

supplements his private signal, thereby obtaining complete information about the state,

which is as efficient as the full-information benchmark; and “no rent at the bottom”,

where the low type receives a payoff equal to his reservation utility, implying that the

seller pays zero information rent to the low type. The results can be established by

contradiction. Details of proof can be found in the Appendix.

Claim 1 (Optimal Menu with A Single-item). If the two types have identical reservation

utilities, i.e., v(π1) = v(π2), the seller can achieve the first-best revenue R with a single-

item menu M = {(π̃i, ti)}i∈{1,2}, which consists of a fully informative signal offered at a

uniform price:

π̃i = π, ti = v − v(π1), ∀i ∈ {1, 2}.

Proof. The first-best revenue is given by

R = (1− θ)(v − v(π1)) + θ(v − v(π2)) = v − v(π1).
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By Remark 1, we know that v(π1 ∨ π) = v = v(π2 ∨ π). Given the menu M described

above, both types receive their reservation utility, and the seller obtains the first-best

revenue R.

We now consider the case where v(π1) > v(π2) for the set Π0 = {π1, π2}. The charac-

terization of an optimal menu will be completed by introducing the willingness to pay

(WTP) condition.

Definition 7 (The WTP Condition). The WTP condition holds if, for the set Π0 =

{π1, π2} with v(π1) > v(π2), there exists a signal, denoted by π∗
1 ∈ Π, such that

(i) π∗
1 is a supplement of π1:

(π1 ∨ π∗
1) ∼ π; (2)

(ii) The WTP of type π1 for π∗
1 is weakly higher than the WTP of type π2 for π∗

1:

v(π1 ∨ π∗
1)− v(π1) ≥ v(π2 ∨ π∗

1)− v(π2). (3)

Claim 2. Under the WTP condition, the signal π∗
1 cannot be π.

Proof. It is straightforward to see that the signal π is a supplement of any signal π ∈ Π.

However, π violates formula (3) and thus cannot be π∗
1 under the WTP condition.

Proposition 2 (First-best Implementation). Consider Π0 = {π1, π2} with v(π1) > v(π2).

If the WTP condition holds, then in an optimal menu:

(i) Type π2 receives his reservation utility v(π2): IR2 must bind;

(ii) The seller achieves the first-best revenue R = (1− θ)(v − v(π1)) + θ(v − v(π2)).

According to Proposition 2, if the WTP condition holds, full surplus extraction is achiev-

able because the seller pays zero information rent to the buyer, regardless of his type.

Furthermore, this full surplus extraction is socially efficient, as the seller can obtain the

first-best revenue. The intuition is that the seller can construct a menu of differenti-

ated signals, tailed to each buyer type, priced at the buyer’s willingness to pay, enabling

efficient screening of the two types of the buyer.
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Under the WTP condition, there exists a signal π∗
1 that satisfies both (2) and (3). Note

that π∗
1 and π are distinct signals, as established in Claim 2. Therefore, the seller can

use π∗
1 and π to construct a menu M ′ = {(π̃′

i, t
′
i)}i∈{1,2} of signals, defined as follows:

π̃′
1 ≜ π∗

1, t′1 ≜ v − v(π1),

π̃′
2 ≜ π, t′2 ≜ v − v(π2).

The feasibility and profitability of menu M ′ are discussed in the Appendix.

Proposition 3. Consider Π0 = {π1, π2} with v(π1) > v(π2). If the WTP condition fails,

then IC2 must bind in an optimal menu.

For the detailed proof, see the Appendix.

3.1 First-best Implementation

The first-best implementation refers to a situation where the optimal outcome is

achieved in a setting with asymmetric information, just as it would be if all participants

had complete information. Under the WTP condition, the first-best implementation can

be attained. We will now establish sufficient conditions for the WTP condition to hold.

Proposition 4 (Supplemental Private Signals). Consider Π0 = {π1, π2} with v(π1) >

v(π2). The WTP condition holds if π1 and π2 are supplements of each other:

(π1 ∨ π2) ∼ π.

Proof. The proof is straightforward. If (π1∨π2) ∼ π, then there exists a signal π∗
1, which

is identical to π2, such that π∗
1 is a supplement of π1. Additionally, the WTP of type π1

for π∗
1 is non-negative, while the WTP of type π2 for π∗

1 is zero.

The result in Proposition 4 relies on the supplemental relationship between signals π1

and π2. If π2 is not a supplement of π1, we must first identify supplements of π1.

To ensure that the supplements of a signal contain only the necessary information, we

18



define minimal supplements by using the concept of strong Blackwell order on signals, as

introduced by Brooks, Frankel, and Kamenica (2024).

Definition 8 (Blackwell Dominance). Signal π Blackwell dominates signal π′ if π

has a weakly higher value than π′ in any decision-making problem.

The Blackwell order on signals is not a partial order, as it is not antisymmetric.9 For

example, in Figure 2, π Blackwell dominates π′, and π′ Blackwell dominates π, but they

are not the same signals. The Blackwell order on signals is reflexive and transitive, making

it a preorder.

Definition 9 (Strong Blackwell Dominance). Signal π strongly Blackwell dominates

signal π′ if, for any signal π̂ ∈ Π, π ∨ π̂ Blackwell dominates π′ ∨ π̂.

The concept that π strongly Blackwell dominates π′ is equivalent to the notion that π

reveals-or-refines π′, as established by Theorem 1 in Brooks, Frankel, and Kamenica

(2024). This means that every signal realization of π either occurs in only one state (and

thus “reveals” the state), or is a subset of one signal realization of π′ (and thus “refines”

π′) . See Figure 7 for an illustration. In this example, consider Ω = {ω1, ω2} and two

signals π = {c, d} and π′ = {e, f}. π strongly Blackwell dominates π′ because c is a

subset of e and d occurs only in state ω2.

ω1 ω2

π
c c d

π′ e e f

Figure 7: The signal π reveals-or-refines π′.

Definition 10 (Minimal Supplements). A minimal supplement of a signal π, denoted

by πms, is a supplement of π such that there is no other supplement of π that is strongly

Blackwell dominated by πms.

9This result is discussed in Brooks, Frankel, and Kamenica (2024).
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Recall that in Figure 6, the signal πγ is a supplement of π for any γ ∈ [0, 0.7), and

the signal π̂ is also a supplement of π. However, πγ cannot be considered as a minimal

supplement of π because, for any γ ∈ [0, 0.7), πγ reveals-or-refines π̂, or equivalently, π̂ is

strongly Blackwell dominated by πγ. Therefore, π̂ is a minimal supplement of π.

Lemma 3. In a model with binary states, a signal with two realizations has a unique

minimal supplement.

Proof. Consider Ω = {ω1, ω2} and a signal π = {s1, s2} that has two realizations. Let

s′1 = {(ω, x) | (ω1, x) ∈ s1, (ω2, x) ∈ s2} and s′2 = {(ω, x) | (ω2, x) ∈ s1, (ω1, x) ∈ s2}. By

definition, the signal π′ = {s′1, s′2} is the unique minimal supplement of π.

A signal may have multiple minimal supplements. For example, in Figure 8, both π̌ and

π̂ are minimal supplements of π.

ω1 ω2

π
a ab bc

π̌
d de ee

π̂
f fg gf

Figure 8: Both π̌ and π̂ are minimal supplements of π.

To find the sufficient condition for the WTP condition to hold, we first define two com-

pound signals, πA and πB, generated by a random device. Consider the set Π0 = {π1, π2}

with v(π1) > v(π2), and a signal πms
1 that is a minimal supplement of π1. The construction

of πA and πB is as follows.

The signal πA consists of a realization from signal π1 ∨ πms
1 with probability 1

2
and a

realization from signal π2 with probability 1
2
. The value of signal πA is given by

v(πA) =
1

2
v(π1 ∨ πms

1 ) +
1

2
v(π2).
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The signal πB consists of a realization from signal π2 ∨ πms
1 with probability 1

2
and a

realization from signal π1 with probability 1
2
. The value of signal πB is given by

v(πB) =
1

2
v(π2 ∨ πms

1 ) +
1

2
v(π1).

Proposition 5. Consider Π0 = {π1, π2} with v(π1) > v(π2). The WTP condition holds

if there exists a minimal supplement πms
1 such that πA Blackwell dominates πB.

Proof. Consider a minimal supplement πms
1 of the signal π1. The signals πA and πB are

constructed from π1, π2, and πms
1 , as defined. If πA Blackwell dominates πB, i.e., πA has

a weakly higher value than πB in any decision-making problem:

1

2
v(π1 ∨ πms

1 ) +
1

2
v(π2) ≥

1

2
v(π2 ∨ πms

1 ) +
1

2
v(π1),

which can be written as

v(π1 ∨ πms
1 )− v(π1) ≥ v(π2 ∨ πms

1 )− v(π2),

then the WTP condition holds, as there exists a signal πms
1 that satisfies both (2) and

(3).

Lemma 4. Signal π Blackwell dominates signal π′ if and only if the experiment induced

by π Blackwell dominates the experiment induced by π′.

Proof. If the experiment induced by π Blackwell dominates the experiment induced by

π′, this means that the former experiment has a weakly higher value than the latter in

any decision-making problem. According to Remark 1, this implies that signal π has

a weakly higher value than signal π′ in any decision-making problem, meaning that π

Blackwell dominates π′. The converse is straightforward to verify.

By Lemma 4, to compare the Blackwell order on signals πA and πB, we can focus on the

Blackwell order of the experiments induced by these signals.

Blackwell Order on Experiments
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Given Ω = {ω1, ..., ωK}, there are K possible states. An experiment, which has I possible

outcomes, can be described by a K × I matrix P = {Pki}, where Pki is the probability

of outcome i ∈ {1, ..., I} in state k ∈ {1, ..., K}. We have Pki ≥ 0 and
∑I

i=1 Pki = 1 for

each k, so that P is called a Markov matrix.

LetP = {Pki} andQ = {Qkj} beK×I,K×J Markov matrices, i.e., any two experiments:

P =


P11 P12 . . . P1I

P21 P22 . . . P2I

...
...

. . .
...

PK1 PK2 . . . PKI

 , Q =


Q11 Q12 . . . Q1J

Q21 Q22 . . . Q2J

...
...

. . .
...

QK1 QK2 . . . QKJ

 .

We say that experiment P Blackwell dominates experiment Q if and only if P has a

weakly higher value than Q in any decision-making problem. Lemma 5 presents a well-

known definition of Blackwell order on experiments.

Lemma 5. Experiment P Blackwell dominates experiment Q if and only if there exists

an I × J Markov matrix D = {Dij} such that

PD = Q.

Theorem 12.2.2 in Blackwell and Girshick (1954) provides several equivalent definitions of

Blackwell order on experiments. I formalise one of these definitions in Lemma 6, which,

while less commonly used, is crucial for the subsequent analysis.
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Define

p∗i ≜
K∑
k=1

Pki, q∗j ≜
K∑
k=1

Qkj,

p∗ ≜
[
p∗1 p∗2 . . . p∗I

]
, q∗ ≜

[
q∗1 q∗2 . . . q∗J

]
,

P∗ ≜



P11

p∗1

P12

p∗2
. . .

P1I

p∗I
P21

p∗1

P22

p∗2
. . .

P2I

p∗I
...

...
. . .

...
PK1

p∗1

PK2

p∗2
. . .

PKI

p∗I


, Q∗ ≜



Q11

q∗1

Q12

q∗2
. . .

Q1J

q∗J
Q21

q∗1

Q22

q∗2
. . .

Q2J

q∗J
...

...
. . .

...
QK1

q∗1

QK2

q∗2
. . .

QKJ

q∗J


.

Lemma 6. Experiment P Blackwell dominates experiment Q if and only if there exists

a J × I Markov matrix C = {Cji} such that

P∗CT = Q∗; (4)

and

q∗C = p∗. (5)

In Lemma 6, equation (4) implies that each column of Q∗ is a convex linear combination

of the columns of P∗, given that C is a Markov matrix.

3.2 Two Examples

Example 1. Consider binary states Ω = {ω1, ω2} and two signals: π1 = {a, b} and

π2 = {c}.

As illustrated in Figure 9, the signal realizations are as follows: a = (ω1, [0, α]) ∪

(ω2, [β, 1]), b = (ω1, [α, 1])∪(ω2, [0, β]), and c = (ω1, [0, 1])∪(ω2, [0, 1]), where α, β ∈ [0, 1].

23



ω1 ω2

π1
a ab b

α β

π2
c c

Figure 9: Example 1.

Proposition 6. Given the set Π0 = {π1, π2} as defined in Example 1, there exists a menu

that guarantees the first-best revenue R for the seller.

According to Proposition 6, in a model with Π0 = {π1, π2} as defined in Example 1,

the first-best implementation is achievable. This result relies on the fact that the WTP

condition holds for the given set Π0.

The signal πms
1 = {e, f}, as shown in Figure 10, is a minimal supplement of π1, as

established in Lemma 3. Based on this, the signal πA can be constructed from π1 ∨ πms
1

and π2, while the signal πB can be constructed from π2 ∨ πms
1 and π1. We can prove

that πA Blackwell dominates πB, which is a sufficient condition for the WTP condition

to hold. Then, by Lemma 4, it is equivalent to prove that the the experiment induced by

πA Blackwell dominates the experiment induced by πB.

ω1 ω2

α β

π1
a ab b

π2
c c

πms
1

e ef f

π1 ∨ πms
1

ae afbf be

π2 ∨ πms
1

ce cecf cf

Figure 10: The minimal supplement in Example 1.
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The experiment induced by πA can be represented by a 2× 5 Markov matrix P, where

P =


ae bf be af c

ω1
α

2

1− α

2
0 0

1

2

ω2 0 0
β

2

1− β

2

1

2

. (6)

Similarly, the experiment induced by πB can be represented by a 2 × 4 Markov matrix

Q, where

Q =


ce cf a b

ω1
α

2

1− α

2

α

2

1− α

2

ω2
β

2

1− β

2

1− β

2

β

2

. (7)

We can establish that the experiment P in (6) Blackwell dominates the experiment Q

in (7) by constructing a 4 × 5 Markov matrix C that satisfies both (4) and (5), as

demonstrated in the proof of Proposition 6.

Example 2. Consider binary states Ω = {ω1, ω2} and two signals: π1 = {a, b} and

π2 = {c, d}.

As illustrated in Figure 11, the signal realizations are as follows: a = (ω1, [0, α1]) ∪

(ω2, [β1, 1]), b = (ω1, [α1, 1])∪(ω2, [0, β1]), c = (ω1, [0, α2])∪(ω2, [β2, 1]), and d = (ω1, [α2, 1])∪

(ω2, [0, β2]), where α1, α2, β1, β2 ∈ [0, 1]. Assume α2 + β2 ≥ 1, α1 ≥ α2, and β1 ≥ β2.

ω1 ω2

π1
a ab b

α1 β1

π2
c cd d

α2 β2

Figure 11: Example 2.

The assumptions α2 + β2 ≥ 1, α1 ≥ α2, and β1 ≥ β2 ensure that v(π1) ≥ v(π2), as

established in Lemma 7.

Lemma 7. In Example 2, π1 Blackwell dominates π2, which ensures that v(π1) ≥ v(π2).
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Proposition 7. Given the set Π0 = {π1, π2} defined in Example 2, there exists a menu

that guarantees the first-best revenue R for the seller.

According to Proposition 7, in a model with Π0 = {π1, π2} as defined in Example 2, the

first-best implementation is achievable. Detailed proofs can be found in the Appendix.

4 Conclusion

This paper discusses the revenue-maximizing mechanism for a monopolist seller who sells

information to a privately informed buyer. The buyer faces a decision under uncertainty

and has private access to an information source. Unlike existing research, we allow for

arbitrary correlations between information sources and model these sources as signals

rather than experiments. Despite information asymmetry, the first-best implementation

is achievable, where the seller can offer a supplemental signal to each buyer type at a price

equal to the buyer’s willingness to pay, ensuring socially efficient full surplus extraction.
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APPENDIX

PROOF OF LEMMA 1.

Given the state space Ω = {ω1, ..., ωK}, the set of beliefs is denoted by

∆(Ω) = {µ ∈ RK
+ |

K∑
k=1

µ(ωk) = 1}.

Note that ∆(Ω) is convex, since for any µ, µ′ ∈ ∆(Ω) and θ ∈ [0, 1], we have θµ+(1−θ)µ′ ∈

∆(Ω).

By definition, for any µ ∈ ∆(Ω), we have

v̂(µ) ≜ max
a∈A

∑
ω∈Ω

µ(ω)u(a, ω),

which implies that for any a ∈ A,

∑
ω∈Ω

µ(ω)u(a, ω) ≤ v̂(µ).

Similarly, for µ′ ∈ ∆(Ω) and any a ∈ A, we have

∑
ω∈Ω

µ′(ω)u(a, ω) ≤ v̂(µ′).

Thus, for any a ∈ A and θ ∈ [0, 1], we obtain

θ
∑
ω∈Ω

µ(ω)u(a, ω) + (1− θ)
∑
ω∈Ω

µ′(ω)u(a, ω) ≤ θv̂(µ) + (1− θ)v̂(µ′).

Since the above inequality holds for any a ∈ A, we have

max
a∈A

(
θ
∑
ω∈Ω

µ(ω)u(a, ω) + (1− θ)
∑
ω∈Ω

µ′(ω)u(a, ω)

)
≤ θv̂(µ) + (1− θ)v̂(µ′),
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which can be rewritten as

max
a∈A

(∑
ω∈Ω

u(a, ω)(θµ(ω) + (1− θ)µ′(ω))

)
≤ θv̂(µ) + (1− θ)v̂(µ′).

Therefore, for any µ, µ′ ∈ ∆(Ω) and θ ∈ [0, 1],

v̂(θµ+ (1− θ)µ′) ≤ θv̂(µ) + (1− θ)v̂(µ′).

This completes the proof, demonstrating that v̂(µ) is convex over the set ∆(Ω).

PROOF OF LEMMA 2.

Let F ∈ ∆(∆(Ω)) and F ′ denote two distributions of beliefs with associated ∆(Ω)-based

random variables Y and Y ′.

Suppose F is a mean-preserving spread of F ′, i.e. E[Y | Y ′] = Y ′.

Then for any convex function h : ∆(Ω) → R, we have

E[h(Y )] = E[E[h(Y ) | Y ′]] ≥ E[h(E[Y | Y ′])] = E[h(Y ′)],

where the first equality comes from the law of iterated expectations, the inequality comes

from the Jensen’s inequality, and the last equality follows from F being a mean-preserving

spread of F ′.

Now, consider an arbitrary signal π ∈ Π. The value of signal π is given by

v(π) = Eµ∼π[v̂(µ)],

where v̂ : ∆(Ω) → R is convex, as established in Lemma 1.

Since the distribution of beliefs induced by π is a mean-preserving spread of the prior µ0,

we have

v(π) = Eµ∼π[v̂(µ)] ≥ v̂(µ0) = v.

Similarly, since the distribution of degenerate beliefs induced by π is a mean-preserving
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spread of the distribution of beliefs induced by π, we have

v = v(π) = Eµ∼π[v̂(µ)] ≥ Eµ∼π[v̂(µ)] = v(π).

Therefore, for any π ∈ Π, we have v ≤ v(π) ≤ v.

PROOF OF PROPOSITION 1.

(i) Prove by contradiction. Suppose t2 < t1 in an optimal menu M = {(π̃i, ti)}i∈{1,2}.

Then, the data seller’s expected revenue, given by (1− θ)t1 + θt2, would be strictly

less than v − v(π1), since t1 is at most v − v(π1). However, since the revenue is

bounded from the bottom, the data seller could increase revenue by selling a fully

informative signal to both types at a price of v − v(π1), which contradicts with the

optimality of menu M .

(ii) Suppose that π̃2 is not a supplement of π2 in an optimal menu M = {(π̃i, ti)}i∈{1,2}.

Then, we have v(π2∨π̃2) < v(π) = v. We will show that the data seller could increase

revenue by choosing an alternative menu M ′, which is both individual-rational and

incentive-compatible.

The menu M ′ is constructed by replacing π̃2 with π′, and charging a strictly higher

price of t2 + ϵ for it, where π′ is a supplement of signal π2: (π2 ∨ π′) ∼ π and

ϵ = v − v(π2 ∨ π̃2) > 0. If type π1 strictly prefers to purchase signal π′ rather than

π̃1, then we can complete the construction of menu M ′ by replacing π̃1 with π′ and

charging a price of t2 + ϵ, which will be higher than t1 because t2 ≥ t1 from (i) of

Proposition 1. If, however, type π1 does not prefer to purchase π′ rather than π̃1,

then we finalize menu M ′ by keeping π̃1 and t1 unchanged.

(iii) Suppose that IR1 is slack in an optimal menu M = {(π̃i, ti)}i∈{1,2}. Then,

v(π1 ∨ π̃1)− t1 > v(π1).

IR2 must bind; otherwise, the data seller could increase revenue by increasing both

t1 and t2 while keeping t1 − t2 constant.

Additionally, IC1 must bind; otherwise, the data seller could increase revenue by
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increasing t1. Since (π2∨ π̃2) ∼ π from (ii) of Proposition 1, IR2 and IC1 determine

the optimal transfers, where t2 = v−v(π2) and t1 = v(π1∨π̃1)−v(π1∨π̃2)+v−v(π2).

Hence, we have

v(π1 ∨ π̃1)− t1 = v(π1 ∨ π̃2)− v + v(π2).

Since v(π1 ∨ π̃2) ≤ v, it follows that:

v(π1 ∨ π̃1)− t1 ≤ v(π2) ≤ v(π1),

which leads to a contradiction.

PROOF OF PROPOSITION 2.

Given Π0 = {π1, π2} with v(π1) > v(π2). Assume that the WTP condition holds, then

there exists a signal π∗
1 satisfying (2) and (3).

(i) Proof by contradiction. Consider an optimal menu M = {(π̃i, ti)}i∈{1,2} and suppose

that IR2 is slack:

t2 < v(π2 ∨ π̃2)− v(π2). (A1)

Then, IC2 must bind:

t2 = v(π2 ∨ π̃2)− v(π2 ∨ π̃1) + t1; (A2)

otherwise, the data seller could improve revenue by increasing t2.

From (iii) in Proposition 1,

t1 = v(π1 ∨ π̃1)− v(π1). (A3)

Then rewrite (A2) into

t2 = v(π2 ∨ π̃2)− v(π2 ∨ π̃1) + v(π1 ∨ π̃1)− v(π1). (A4)
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Combining (A1) and (A4), we have

v(π1 ∨ π̃1)− v(π1) < v(π2 ∨ π̃1)− v(π2). (A5)

The revenue from menu M is (1 − θ)t1 + θt2, with t1 and t2 in (A3) and (A4),

respectively. We will now demonstrate that the data seller can improve revenue by

choosing an alternative menu M ′ = {(π̃′
i, t

′
i)}i∈{1,2} of differentiated signals, where

π̃′
1 ≜ π∗

1, t′1 ≜ v − v(π1),

π̃′
2 ≜ π, t′2 ≜ v − v(π2).

To verify the feasibility of menu M ′, first check the incentive-compatibility con-

straints. Both signal π∗
1 and π provide the same additional value to type π1, as

v(π1 ∨ π∗
1) = v(π) = v(π1 ∨ π). However, since v(π1) > v(π2), π

∗
1 is strictly cheaper

than π: t′1 < t′2. Therefore,

v(π1 ∨ π∗
1)− t′1 > v(π1 ∨ π)− t′2,

which implies that type π1 strictly prefers to purchase signal π∗
1 rather than π.

From (2) and (3), we know

v(π2 ∨ π)− t′2 ≥ v(π2 ∨ π∗
1)− t′1,

which implies that type π2 prefers to purchase signal π rather than π∗
1. It is straight-

forward to verify that menu M ′ satisfies the individual-rationality constraints, as

both types receive their reservation utilities.

We now discuss the profitability of menu M ′. The value of signals is bounded from

the above: v(π1 ∨ π̃1) ≤ v. Thus,

t1 ≤ t′1.

From (ii) in Proposition 1, v(π2 ∨ π̃2) = v(π) = v. Then reduce (A4) into

t2 = v − v(π2 ∨ π̃1) + v(π1 ∨ π̃1)− v(π1),
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which, combined with (A5), implies

t2 < t′2.

Thus, for any θ ∈ (0, 1), we have

(1− θ)t1 + θt2 < (1− θ)t′1 + θt′2,

which implies that the expected revenue from menu M is strictly lower than that

from menu M ′. This leads to a contradiction.

(ii) Consider the menu M ′ constructed in the proof of (i) of Proposition 2. It is easy to

verify that this menu guarantees the first-best revenue R for the data seller, where

R = (1− θ)(v − v(π1)) + θ(v − v(π2)).

PROOF OF PROPOSITION 3.

Given Π0 = {π1, π2} with v(π1) > v(π2). Assume that the WTP condition fails, then for

any supplement of signal π1, denoted by πsu
1 , we must have

v(π1 ∨ πsu
1 )− v(π1) < v(π2 ∨ πsu

1 )− v(π2). (A6)

Consider an optimal menu M = {(π̃i, ti)}i∈{1,2} and suppose that IC2 is slack:

t2 < v(π2 ∨ π̃2)− v(π2 ∨ π̃1) + t1. (A7)

From (ii) in Proposition 1, we have v(π2 ∨ π̃2) = v(π) = v.

From (iii) in Proposition 1, we have t1 = v(π1 ∨ π̃1)− v(π1). Then rewrite (A7) into

t2 < v − v(π2 ∨ π̃1) + v(π1 ∨ π̃1)− v(π1). (A8)

IR2 must bind:

t2 = v(π2 ∨ π̃2)− v(π2) = v − v(π2); (A9)

32



otherwise, the data seller could improve revenue by increasing t2.

Substituting (A9) into (A8), we get

v(π1 ∨ π̃1)− v(π1) > v(π2 ∨ π̃1)− v(π2).

Then from (A6), signal π̃1 cannot be a supplement of π1, which implies that v(π1∨π̃1) < v.

Given that π̃1 is not a supplement of π1 and IC2 is slack, the data seller can always

improve revenue by charging a higher price for adding even a small piece of information

to π̃1, which is valuable to the decision maker. This leads to a contradiction.

PROOF OF PROPOSITION 6.

In the cases where α = β = 0 or α = β = 1, the signal π1 becomes π. Thus, type

π1 already has full information about the state: v(π1) = v. The first-best revenue in

this case is given by R = θ(v − v(π2)). The data seller can achieve R by selling a fully

informative signal to type π2 at a price of v − v(π2).

In the cases where α = 0, β = 1 or α = 1, β = 0, the signals π1 and π2 are uninformative

about the state: v(π1) = v = v(π2). Then, the data seller can achieve the first-best

revenue, as established in Claim 1.

We now focus on the remaining cases where 0 < α+β < 2, α+1−β > 0, and 1−α+β > 0.

These conditions ensure that the denominators of each element in the matrix C, defined

below, are positive.

Consider the experiment P in (6), induced by signal πA, and the experiment Q in (7),

induced by signal πB. We will prove that P Blackwell dominates Q.
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By definition,

p∗ =

[
α

2

1− α

2

β

2

1− β

2
1

]
,

q∗ =

[
α + β

2

2− α− β

2

α + 1− β

2

1− α + β

2

]
,

P∗ =

1 1 0 0
1

2

0 0 1 1
1

2

 ,

Q∗ =


α

α + β

1− α

2− α− β

α

α + 1− β

1− α

1− α + β

β

α + β

1− β

2− α− β

1− β

α + 1− β

β

1− α + β

 .

There exists a 4× 5 Markov matrix C such that P∗CT = Q∗ and q∗C = p∗.

If α ≥ β, let

C =



(α− β)α

α + β

(α− β)(1− α)

α + β
0 0

2β

α + β

0 0
(α− β)β

2− α− β

(α− β)(1− β)

2− α− β

2(1− α)

2− α− β

αβ

α + 1− β

β(1− α)

α + 1− β

(1− α)β

α + 1− β

(1− α)(1− β)

α + 1− β

2(α− β)

α + 1− β

(1− α)α

1− α + β

(1− α)2

1− α + β

β2

1− α + β

β(1− β)

1− α + β
0


;

and if β > α, let

C =



0 0
(β − α)β

α + β

(β − α)(1− β)

α + β

2α

α + β

(β − α)α

2− α− β

(β − α)(1− α)

2− α− β
0 0

2(1− β)

2− α− β

α2

α + 1− β

α(1− α)

α + 1− β

(1− β)β

α + 1− β

(1− β)2

α + 1− β
0

(1− β)α

1− α + β

(1− β)(1− α)

1− α + β

αβ

1− α + β

α(1− β)

1− α + β

2(β − α)

1− α + β


.

Since the sum of each row in matrix C is 1, to verify that C is a Markov matrix, we only

need to ensure that all of its elements are non-negative. The non-negativity condition
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holds in both cases: when α ≥ β and when β > α.

According to Lemma 6, P Blackwell dominates Q. Consequently, by Lemma 4, πA

Blackwell dominates πB. Therefore, by Proposition 5, the WTP condition must hold.

Given this, Proposition 2 guarantees that the data seller can achieve the first-best revenue

R with the following menu M = {(π̃i, ti)}i∈{1,2}, where

π̃1 ≜ πms
1 , t1 ≜ v − v(π1),

π̃2 ≜ π, t2 ≜ v − v(π2).

PROOF OF LEMMA 7.

Under assumptions α2 + β2 ≥ 1, α1 ≥ α2, and β1 ≥ β2, we know that α1 + β1 ≥ 1.

If α1 + β1 = 1, it must be the case that α2 + β2 = 1. In this scenario, the only possibility

is α1 = α2 and β1 = β2, implying that signals π1 and π2 are identical. Then the value of

π1 is equal to the value of π2 in any decision-making problem: v(π1) = v(π2).

We will now consider the cases where α1 + β1 > 1.

The experiment induced by π1 can be represented by a 2× 2 Markov matrix P, where

P =

 α1 1− α1

1− β1 β1

 .

Similarly, the experiment induced by π2 can be represented by a 2× 2 Markov matrix Q,

where

Q =

 α2 1− α2

1− β2 β2

 .

There exists a 2× 2 Markov matrix D such that PD = Q, where

D =


α2β1 − (1− α1)(1− β2)

α1 + β1 − 1

(1− α2)β1 − (1− α1)β2

α1 + β1 − 1

α1(1− β2)− α2(1− β1)

α1 + β1 − 1

α1β2 − (1− α2)(1− β1)

α1 + β1 − 1

 .

35



To verify that D is a Markov matrix, note that the sum of each row in D is equal to 1.

Additionally, given that α2 + β2 ≥ 1, 0 ≤ α2 ≤ α1 ≤ 1, and 0 ≤ β2 ≤ β1 ≤ 1, we have

α2β1 ≥ α2β2 ≥ (1− α2)(1− β2) ≥ (1− α1)(1− β2),

α1β2 ≥ α2β2 ≥ (1− α2)(1− β2) ≥ (1− α2)(1− β1),

(1− α2)β1 ≥ (1− α1)β2,

α1(1− β2) ≥ α2(1− β1),

which imply that all elements in D is non-negative.

Thus, by Lemma 5, the experiment P Blackwell dominates the experiment Q. Then

according to Lemma 4, we know that the signal π1 Blackwell dominates the signal π2,

which ensures that v(π1) ≥ v(π2).

PROOF OF PROPOSITION 7.

Given the set Π0 = {π1, π2} of signals as defined in Example 2. By Lemma 7, we have

v(π1) ≥ v(π2). If v(π1) = v(π2), then the data seller can achieve the first-best revenue,

as established in Claim 1.

In the following cases, the signal π2 becomes π, and the data seller can obtain the first-best

revenue, as established in Proposition 6:

(i) If α2 = 0, we must have β2 = 1 since α2 + β2 ≥ 1;

(ii) If β2 = 0, we must have α2 = 1 since α2 + β2 ≥ 1;

(iii) If α1 = 0, we must have α2 = 0 since α2 ≤ α1;

(iv) If β1 = 0, we must have β2 = 0 since β2 ≤ β1.

We will now consider the remaining cases where α2 + 1 − β2 > 0, 1 − α2 + β2 > 0,

α2+β1−β2 > 0, α1−α2+β2 > 0, α1+1−β1 > 0, and 1−α1+β1 > 0. These conditions

ensure that the denominator of each element in the matrices P∗ and Q∗, defined below,

is positive.
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ω1 ω2

π1
a ab b

α1 β1

π2
c cd d

α2 β2

πms
1

e ef f

α1 β1

π1 ∨ πms
1

ae afbf be
α1 β1

π2 ∨ πms
1

ce cede dedf cf

α2 α1 β2 β1

Figure 12: The minimal supplement in Example 2.

As illustrated in Figure 12, the signal π1 has a unique minimal supplement πms
1 = {e, f}.

We will prove that the WTP condition holds for the set Π0 = {π1, π2} of signals and

thus the data seller can receive the first-best revenue from the following menu M =

{(π̃i, ti)}i∈{1,2}, where

π̃1 ≜ πms
1 , t1 ≜ v − v(π1),

π̃2 ≜ π, t2 ≜ v − v(π2).

First construct the signals πA and πB as defined.

The experiment induced by signal πA can be represented by a 2 × 6 Markov matrix P,

where

P =


ae bf be af c d

ω1
α1

2

1− α1

2
0 0

α2

2

1− α2

2

ω2 0 0
β1

2

1− β1

2

1− β2

2

β2

2

.
Similarly, the experiment induced by signal πB can be represented by a 2 × 6 Markov
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matrix P, where

Q =


ce de df cf a b

ω1
α2

2

α1 − α2

2

1− α1

2
0

α1

2

1− α1

2

ω2
β1 − β2

2

β2

2
0

1− β1

2

1− β1

2

β1

2

.
By definition,

p∗ =

[
α1

2

1− α1

2

β1

2

1− β1

2

α2 + 1− β2

2

1− α2 + β2

2

]
,

q∗ =

[
α2 + β1 − β2

2

α1 − α2 + β2

2

1− α1

2

1− β1

2

α1 + 1− β1

2

1− α1 + β1

2

]
,

P∗ =

1 1 0 0
α2

α2 + 1− β2

1− α2

1− α2 + β2

0 0 1 1
1− β2

α2 + 1− β2

β2

1− α2 + β2

 ,

Q∗ =


α2

α2 + β1 − β2

α1 − α2

α1 − α2 + β2

1 0
α1

α1 + 1− β1

1− α1

1− α1 + β1

β1 − β2

α2 + β1 − β2

β2

α1 − α2 + β2

0 1
1− β1

α1 + 1− β1

β1

1− α1 + β1

 .

There exists a 6× 6 Markov matrix C such that P∗CT = Q∗ and q∗C = p∗, where

C =



c1

c2

c3

c4

c5

c6


,
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with

c1 =

[
(1− β1)α2α1

(α2 + β1 − β2)(1− β2)

(1− β1)α2(1− α1)

(α2 + β1 − β2)(1− β2)
0 0

(β1 − β2)(α2 + 1− β2)

(α2 + β1 − β2)(1− β2)
0

]
,

c2 =

[
0 0

(1− α1)β2β1

(α1 − α2 + β2)(1− α2)

(1− α1)β2(1− β1)

(α1 − α2 + β2)(1− α2)
0

(α1 − α2)(1− α2 + β2)

(α1 − α2 + β2)(1− α2)

]
,

c3 =
[
α1 1− α1 0 0 0 0

]
,

c4 =
[
0 0 β1 1− β1 0 0

]
,

c5 =

[
((1− β2)α1 − (1− β1)α2)α1

(α1 + 1− β1)(1− β2)

((1− β2)α1 − (1− β1)α2)(1− α1)

(α1 + 1− β1)(1− β2)
0 0

(1− β1)(α2 + 1− β2)

(α1 + 1− β1)(1− β2)
0

]
,

c6 =

[
0 0

((1− α2)β1 − (1− α1)β2)β1

(1− α1 + β1)(1− α2)

((1− α2)β1 − (1− α1)β2)(1− β1)

(1− α1 + β1)(1− α2)
0

(1− α1)(1− α2 + β2)

(1− α1 + β1)(1− α2)

]
.

Since the sum of each row in matrix C is 1, to verify that C is a Markov matrix, we only

need to ensure that all of its elements are non-negative. Note that when α2 = 1, it implies

α1 = 1, and similarly, when β2 = 1, it implies β1 = 1. In both cases, the corresponding

matrix element becomes 0. Furthermore, under the assumptions 0 ≤ α2 ≤ α1 ≤ 1 and 0 ≤

β2 ≤ β1 ≤ 1, we establish that the following inequalities hold: (1−β2)α1− (1−β1)α2 ≥ 0

and (1 − α2)β1 − (1 − α1)β2 ≥ 0. Given that the denominators of each element in the

matrices P∗ and Q∗ are positive, we conclude that all elements of C are non-negative.

Thus, matrix C satisfies the requirements of a Markov matrix.

Thus, by Lemma 6, P Blackwell dominates Q. This implies that πA Blackwell dominates

πB according to Lemma 4. Therefore, by Proposition 5, the WTP condition holds.
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